Acta Psychologica Sinica ›› 2022, Vol. 54 ›› Issue (91): 91-107.doi: 10.3724/SP.J.1041.2022.00091
• Reports of Empirical Studies •
WEN Zhonglin1(), OUYANG Jinying1(), FANG Junyan1, LIU Xiqin2
Online:
2021-11-26
Contact:
WEN Zhonglin,OUYANG Jinying
E-mail:wenzl@scnu.edu.cn;ouyangjinying@m.scnu.edu.cn
Supported by:
WEN Zhonglin, OUYANG Jinying, FANG Junyan, LIU Xiqin. (2022). Standardized estimates for latent interaction effects: Method comparison and selection strategy. Acta Psychologica Sinica, 54(91), 91-107.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2022.00091
N | Method | Proper solution% | M | SD | SE | SE Bias% | Type I error rate |
---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (0.001, -0.004), ξ2 (-0.008, -0.007), ξ1ξ2 (-0.024, 6.163) | |||||||
100 | PI | 72.8 | -0.009 | 0.239 | 0.180 | -24.5 | 0.069 |
LMS | 100.0 | -0.003 | 0.148 | 0.147 | -0.8 | 0.082 | |
BN | 100.0 | -0.005 | 0.146 | 0.147 | 0.6 | 0.060 | |
BI | 100.0 | -0.003 | 0.047 | 0.083 | 75.8 | 0.000 | |
200 | PI | 92.2 | 0.001 | 0.137 | 0.116 | -15.3 | 0.043 |
LMS | 100.0 | 0.005 | 0.105 | 0.100 | -4.8 | 0.080 | |
BN | 100.0 | 0.019 | 0.107 | 0.098 | -8.5 | 0.088 | |
BI | 100.0 | 0.011 | 0.053 | 0.068 | 28.3 | 0.010 | |
500 | PI | 100.0 | 0.000 | 0.077 | 0.072 | -6.6 | 0.052 |
LMS | 100.0 | 0.002 | 0.064 | 0.063 | -1.6 | 0.060 | |
BN | 100.0 | 0.001 | 0.065 | 0.063 | -3.1 | 0.058 | |
BI | 100.0 | 0.002 | 0.046 | 0.053 | 14.1 | 0.030 | |
ϕ12 = 0.3, ξ1 (-0.001, 0.000), ξ2 (-0.001, 0.001), ξ1ξ2 (1.619, 7.628) | |||||||
100 | PI | 77.4 | 0.006 | 0.207 | 0.163 | -21.4 | 0.059 |
LMS | 100.0 | 0.006 | 0.136 | 0.129 | -4.8 | 0.082 | |
BN | 100.0 | 0.008 | 0.133 | 0.135 | 1.1 | 0.044 | |
BI | 100.0 | 0.003 | 0.049 | 0.081 | 65.3 | 0.000 | |
200 | PI | 92.4 | 0.009 | 0.121 | 0.105 | -13.1 | 0.045 |
LMS | 100.0 | 0.003 | 0.092 | 0.089 | -3.4 | 0.070 | |
BN | 100.0 | 0.016 | 0.093 | 0.088 | -5.7 | 0.068 | |
BI | 100.0 | 0.010 | 0.051 | 0.064 | 24.8 | 0.008 | |
500 | PI | 99.6 | 0.004 | 0.064 | 0.063 | -0.4 | 0.034 |
LMS | 100.0 | 0.001 | 0.054 | 0.055 | 1.2 | 0.048 | |
BN | 100.0 | 0.001 | 0.056 | 0.055 | -1.5 | 0.054 | |
BI | 100.0 | 0.001 | 0.042 | 0.048 | 14.4 | 0.020 | |
ϕ12 = 0.7, ξ1 (-0.005, 0.002), ξ2 (-0.005, -0.002), ξ1ξ2 (2.673, 11.073) | |||||||
100 | PI | 84.2 | 0.009 | 0.153 | 0.120 | -21.9 | 0.076 |
LMS | 99.8 | 0.008 | 0.099 | 0.094 | -4.5 | 0.078 | |
BN | 96.2 | 0.011 | 0.100 | 0.103 | 3.5 | 0.037 | |
BI | 100.0 | 0.006 | 0.048 | 0.072 | 49.1 | 0.006 | |
200 | PI | 97.2 | 0.008 | 0.089 | 0.079 | -10.6 | 0.045 |
LMS | 100.0 | 0.003 | 0.065 | 0.065 | 0.2 | 0.054 | |
BN | 100.0 | 0.013 | 0.067 | 0.065 | -2.1 | 0.062 | |
BI | 100.0 | 0.012 | 0.045 | 0.054 | 20.5 | 0.034 | |
500 | PI | 100.0 | 0.004 | 0.049 | 0.048 | -2.3 | 0.046 |
LMS | 100.0 | 0.002 | 0.040 | 0.041 | 0.9 | 0.048 | |
BN | 100.0 | 0.001 | 0.041 | 0.040 | -2.3 | 0.050 | |
BI | 100.0 | 0.000 | 0.035 | 0.037 | 7.0 | 0.032 |
Table 1 Results of the standardized estimation of latent interaction effects under the normal distribution (γ3 = 0)
N | Method | Proper solution% | M | SD | SE | SE Bias% | Type I error rate |
---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (0.001, -0.004), ξ2 (-0.008, -0.007), ξ1ξ2 (-0.024, 6.163) | |||||||
100 | PI | 72.8 | -0.009 | 0.239 | 0.180 | -24.5 | 0.069 |
LMS | 100.0 | -0.003 | 0.148 | 0.147 | -0.8 | 0.082 | |
BN | 100.0 | -0.005 | 0.146 | 0.147 | 0.6 | 0.060 | |
BI | 100.0 | -0.003 | 0.047 | 0.083 | 75.8 | 0.000 | |
200 | PI | 92.2 | 0.001 | 0.137 | 0.116 | -15.3 | 0.043 |
LMS | 100.0 | 0.005 | 0.105 | 0.100 | -4.8 | 0.080 | |
BN | 100.0 | 0.019 | 0.107 | 0.098 | -8.5 | 0.088 | |
BI | 100.0 | 0.011 | 0.053 | 0.068 | 28.3 | 0.010 | |
500 | PI | 100.0 | 0.000 | 0.077 | 0.072 | -6.6 | 0.052 |
LMS | 100.0 | 0.002 | 0.064 | 0.063 | -1.6 | 0.060 | |
BN | 100.0 | 0.001 | 0.065 | 0.063 | -3.1 | 0.058 | |
BI | 100.0 | 0.002 | 0.046 | 0.053 | 14.1 | 0.030 | |
ϕ12 = 0.3, ξ1 (-0.001, 0.000), ξ2 (-0.001, 0.001), ξ1ξ2 (1.619, 7.628) | |||||||
100 | PI | 77.4 | 0.006 | 0.207 | 0.163 | -21.4 | 0.059 |
LMS | 100.0 | 0.006 | 0.136 | 0.129 | -4.8 | 0.082 | |
BN | 100.0 | 0.008 | 0.133 | 0.135 | 1.1 | 0.044 | |
BI | 100.0 | 0.003 | 0.049 | 0.081 | 65.3 | 0.000 | |
200 | PI | 92.4 | 0.009 | 0.121 | 0.105 | -13.1 | 0.045 |
LMS | 100.0 | 0.003 | 0.092 | 0.089 | -3.4 | 0.070 | |
BN | 100.0 | 0.016 | 0.093 | 0.088 | -5.7 | 0.068 | |
BI | 100.0 | 0.010 | 0.051 | 0.064 | 24.8 | 0.008 | |
500 | PI | 99.6 | 0.004 | 0.064 | 0.063 | -0.4 | 0.034 |
LMS | 100.0 | 0.001 | 0.054 | 0.055 | 1.2 | 0.048 | |
BN | 100.0 | 0.001 | 0.056 | 0.055 | -1.5 | 0.054 | |
BI | 100.0 | 0.001 | 0.042 | 0.048 | 14.4 | 0.020 | |
ϕ12 = 0.7, ξ1 (-0.005, 0.002), ξ2 (-0.005, -0.002), ξ1ξ2 (2.673, 11.073) | |||||||
100 | PI | 84.2 | 0.009 | 0.153 | 0.120 | -21.9 | 0.076 |
LMS | 99.8 | 0.008 | 0.099 | 0.094 | -4.5 | 0.078 | |
BN | 96.2 | 0.011 | 0.100 | 0.103 | 3.5 | 0.037 | |
BI | 100.0 | 0.006 | 0.048 | 0.072 | 49.1 | 0.006 | |
200 | PI | 97.2 | 0.008 | 0.089 | 0.079 | -10.6 | 0.045 |
LMS | 100.0 | 0.003 | 0.065 | 0.065 | 0.2 | 0.054 | |
BN | 100.0 | 0.013 | 0.067 | 0.065 | -2.1 | 0.062 | |
BI | 100.0 | 0.012 | 0.045 | 0.054 | 20.5 | 0.034 | |
500 | PI | 100.0 | 0.004 | 0.049 | 0.048 | -2.3 | 0.046 |
LMS | 100.0 | 0.002 | 0.040 | 0.041 | 0.9 | 0.048 | |
BN | 100.0 | 0.001 | 0.041 | 0.040 | -2.3 | 0.050 | |
BI | 100.0 | 0.000 | 0.035 | 0.037 | 7.0 | 0.032 |
N | Method | Proper solution% | M | SD | SE | SE Bias% | Type I error rate |
---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (1.141, 1.962), ξ2 (1.152, 2.002), ξ1ξ2 (1.278, 20.126) | |||||||
100 | PI | 64.6 | 0.031 | 0.239 | 0.198 | -17.0 | 0.043 |
LMS | 99.4 | 0.015 | 0.155 | 0.158 | 2.1 | 0.078 | |
BN | 100.0 | 0.020 | 0.153 | 0.153 | -0.3 | 0.064 | |
BI | 100.0 | 0.005 | 0.047 | 0.083 | 77.1 | 0.004 | |
200 | PI | 83.2 | 0.009 | 0.157 | 0.130 | -17.2 | 0.060 |
LMS | 100.0 | 0.013 | 0.112 | 0.108 | -3.9 | 0.078 | |
BN | 100.0 | 0.030 | 0.114 | 0.102 | -10.1 | 0.096 | |
BI | 100.0 | 0.017 | 0.054 | 0.068 | 26.5 | 0.034 | |
500 | PI | 97.8 | 0.001 | 0.087 | 0.077 | -11.5 | 0.059 |
LMS | 100.0 | 0.016 | 0.067 | 0.067 | -0.9 | 0.092 | |
BN | 100.0 | 0.017 | 0.069 | 0.064 | -7.3 | 0.088 | |
BI | 100.0 | 0.013 | 0.047 | 0.053 | 12.9 | 0.034 | |
ϕ12 = 0.3, ξ1 (0.855, 1.121), ξ2 (0.858, 1.161), ξ1ξ2 (3.200, 32.430) | |||||||
100 | PI | 75.8 | 0.008 | 0.194 | 0.155 | -20.0 | 0.069 |
LMS | 100.0 | 0.049 | 0.135 | 0.132 | -2.1 | 0.088 | |
BN | 100.0 | 0.058 | 0.135 | 0.137 | 1.6 | 0.060 | |
BI | 100.0 | 0.021 | 0.049 | 0.081 | 64.7 | 0.010 | |
200 | PI | 91.6 | 0.005 | 0.113 | 0.104 | -8.2 | 0.057 |
LMS | 100.0 | 0.044 | 0.090 | 0.090 | -0.2 | 0.068 | |
BN | 100.0 | 0.061 | 0.092 | 0.088 | -4.3 | 0.122 | |
BI | 100.0 | 0.035 | 0.051 | 0.063 | 25.4 | 0.046 | |
500 | PI | 100.0 | -0.002 | 0.069 | 0.064 | -7.8 | 0.056 |
LMS | 100.0 | 0.044 | 0.056 | 0.055 | -1.3 | 0.122 | |
BN | 100.0 | 0.046 | 0.057 | 0.055 | -4.5 | 0.136 | |
BI | 100.0 | 0.034 | 0.043 | 0.047 | 11.4 | 0.088 | |
ϕ12 = 0.7, ξ1 (0.850, 1.075), ξ2 (0.856, 1.110), ξ1ξ2 (6.275, 86.323) | |||||||
100 | PI | 95.0 | 0.002 | 0.137 | 0.118 | -14.0 | 0.072 |
LMS | 100.0 | 0.064 | 0.100 | 0.098 | -2.4 | 0.106 | |
BN | 97.2 | 0.074 | 0.101 | 0.107 | 5.8 | 0.080 | |
BI | 100.0 | 0.035 | 0.048 | 0.071 | 48.2 | 0.032 | |
200 | PI | 100.0 | 0.000 | 0.081 | 0.074 | -8.8 | 0.058 |
LMS | 100.0 | 0.059 | 0.067 | 0.064 | -3.8 | 0.136 | |
BN | 99.6 | 0.076 | 0.069 | 0.067 | -3.4 | 0.177 | |
BI | 100.0 | 0.053 | 0.045 | 0.053 | 17.0 | 0.118 | |
500 | PI | 100.0 | -0.001 | 0.046 | 0.043 | -6.4 | 0.066 |
LMS | 100.0 | 0.056 | 0.041 | 0.040 | -2.5 | 0.272 | |
BN | 100.0 | 0.057 | 0.042 | 0.040 | -5.8 | 0.292 | |
BI | 100.0 | 0.048 | 0.035 | 0.036 | 2.7 | 0.248 |
Table 2 Results of the standardized estimation of latent interaction effects under the non-normal distribution (γ3 = 0)
N | Method | Proper solution% | M | SD | SE | SE Bias% | Type I error rate |
---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (1.141, 1.962), ξ2 (1.152, 2.002), ξ1ξ2 (1.278, 20.126) | |||||||
100 | PI | 64.6 | 0.031 | 0.239 | 0.198 | -17.0 | 0.043 |
LMS | 99.4 | 0.015 | 0.155 | 0.158 | 2.1 | 0.078 | |
BN | 100.0 | 0.020 | 0.153 | 0.153 | -0.3 | 0.064 | |
BI | 100.0 | 0.005 | 0.047 | 0.083 | 77.1 | 0.004 | |
200 | PI | 83.2 | 0.009 | 0.157 | 0.130 | -17.2 | 0.060 |
LMS | 100.0 | 0.013 | 0.112 | 0.108 | -3.9 | 0.078 | |
BN | 100.0 | 0.030 | 0.114 | 0.102 | -10.1 | 0.096 | |
BI | 100.0 | 0.017 | 0.054 | 0.068 | 26.5 | 0.034 | |
500 | PI | 97.8 | 0.001 | 0.087 | 0.077 | -11.5 | 0.059 |
LMS | 100.0 | 0.016 | 0.067 | 0.067 | -0.9 | 0.092 | |
BN | 100.0 | 0.017 | 0.069 | 0.064 | -7.3 | 0.088 | |
BI | 100.0 | 0.013 | 0.047 | 0.053 | 12.9 | 0.034 | |
ϕ12 = 0.3, ξ1 (0.855, 1.121), ξ2 (0.858, 1.161), ξ1ξ2 (3.200, 32.430) | |||||||
100 | PI | 75.8 | 0.008 | 0.194 | 0.155 | -20.0 | 0.069 |
LMS | 100.0 | 0.049 | 0.135 | 0.132 | -2.1 | 0.088 | |
BN | 100.0 | 0.058 | 0.135 | 0.137 | 1.6 | 0.060 | |
BI | 100.0 | 0.021 | 0.049 | 0.081 | 64.7 | 0.010 | |
200 | PI | 91.6 | 0.005 | 0.113 | 0.104 | -8.2 | 0.057 |
LMS | 100.0 | 0.044 | 0.090 | 0.090 | -0.2 | 0.068 | |
BN | 100.0 | 0.061 | 0.092 | 0.088 | -4.3 | 0.122 | |
BI | 100.0 | 0.035 | 0.051 | 0.063 | 25.4 | 0.046 | |
500 | PI | 100.0 | -0.002 | 0.069 | 0.064 | -7.8 | 0.056 |
LMS | 100.0 | 0.044 | 0.056 | 0.055 | -1.3 | 0.122 | |
BN | 100.0 | 0.046 | 0.057 | 0.055 | -4.5 | 0.136 | |
BI | 100.0 | 0.034 | 0.043 | 0.047 | 11.4 | 0.088 | |
ϕ12 = 0.7, ξ1 (0.850, 1.075), ξ2 (0.856, 1.110), ξ1ξ2 (6.275, 86.323) | |||||||
100 | PI | 95.0 | 0.002 | 0.137 | 0.118 | -14.0 | 0.072 |
LMS | 100.0 | 0.064 | 0.100 | 0.098 | -2.4 | 0.106 | |
BN | 97.2 | 0.074 | 0.101 | 0.107 | 5.8 | 0.080 | |
BI | 100.0 | 0.035 | 0.048 | 0.071 | 48.2 | 0.032 | |
200 | PI | 100.0 | 0.000 | 0.081 | 0.074 | -8.8 | 0.058 |
LMS | 100.0 | 0.059 | 0.067 | 0.064 | -3.8 | 0.136 | |
BN | 99.6 | 0.076 | 0.069 | 0.067 | -3.4 | 0.177 | |
BI | 100.0 | 0.053 | 0.045 | 0.053 | 17.0 | 0.118 | |
500 | PI | 100.0 | -0.001 | 0.046 | 0.043 | -6.4 | 0.066 |
LMS | 100.0 | 0.056 | 0.041 | 0.040 | -2.5 | 0.272 | |
BN | 100.0 | 0.057 | 0.042 | 0.040 | -5.8 | 0.292 | |
BI | 100.0 | 0.048 | 0.035 | 0.036 | 2.7 | 0.248 |
N | Method | Proper solution% | M | M Bias% | SD | SE | SE Bias% | Statistical power |
---|---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (0.001, -0.004), ξ2 (-0.008, -0.007), ξ1ξ2 (-0.024, 6.163) | ||||||||
100 | PI | 73.8 | 0.217 | 8.3 | 0.216 | 0.183 | -15.6 | 0.236 |
LMS | 100.0 | 0.189 | -5.7 | 0.148 | 0.144 | -2.6 | 0.300 | |
BN | 100.0 | 0.183 | -8.3 | 0.146 | 0.145 | -0.2 | 0.268 | |
BI | 100.0 | 0.195 | -2.6 | 0.051 | 0.084 | 65.0 | 0.766 | |
200 | PI | 95.2 | 0.213 | 6.7 | 0.141 | 0.129 | -8.8 | 0.416 |
LMS | 100.0 | 0.199 | -0.5 | 0.104 | 0.098 | -6.3 | 0.566 | |
BN | 100.0 | 0.215 | 7.3 | 0.106 | 0.095 | -10.4 | 0.638 | |
BI | 100.0 | 0.208 | 4.1 | 0.054 | 0.067 | 24.1 | 0.924 | |
500 | PI | 100.0 | 0.204 | 2.1 | 0.081 | 0.079 | -2.4 | 0.774 |
LMS | 100.0 | 0.201 | 0.3 | 0.061 | 0.061 | 0.0 | 0.878 | |
BN | 100.0 | 0.202 | 1.2 | 0.062 | 0.061 | -1.7 | 0.888 | |
BI | 100.0 | 0.201 | 0.7 | 0.045 | 0.051 | 13.2 | 0.986 | |
ϕ12 = 0.3, ξ1 (-0.001, 0.000), ξ2 (-0.001, 0.001), ξ1ξ2 (1.619, 7.628) | ||||||||
100 | PI | 81.2 | 0.230 | 15.2 | 0.210 | 0.176 | -15.9 | 0.273 |
LMS | 100.0 | 0.198 | -1.1 | 0.133 | 0.124 | -7.0 | 0.420 | |
BN | 100.0 | 0.200 | -0.2 | 0.130 | 0.131 | 1.1 | 0.374 | |
BI | 100.0 | 0.200 | -0.2 | 0.051 | 0.081 | 58.5 | 0.778 | |
200 | PI | 95.8 | 0.226 | 12.9 | 0.142 | 0.120 | -15.3 | 0.476 |
LMS | 100.0 | 0.201 | 0.7 | 0.089 | 0.086 | -3.4 | 0.626 | |
BN | 100.0 | 0.215 | 7.6 | 0.089 | 0.085 | -4.7 | 0.674 | |
BI | 100.0 | 0.209 | 4.6 | 0.051 | 0.063 | 21.9 | 0.962 | |
500 | PI | 99.6 | 0.207 | 3.7 | 0.072 | 0.071 | -1.4 | 0.871 |
LMS | 100.0 | 0.201 | 0.7 | 0.054 | 0.054 | 0.1 | 0.954 | |
BN | 100.0 | 0.204 | 2.1 | 0.055 | 0.053 | -3.5 | 0.964 | |
BI | 100.0 | 0.202 | 1.0 | 0.042 | 0.046 | 9.3 | 0.998 | |
ϕ12 = 0.7, ξ1 (-0.005, 0.002), ξ2 (-0.005, -0.002), ξ1ξ2 (2.673, 11.073) | ||||||||
100 | PI | 89.6 | 0.232 | 15.9 | 0.165 | 0.134 | -18.7 | 0.446 |
LMS | 99.8 | 0.203 | 1.4 | 0.095 | 0.090 | -5.4 | 0.623 | |
BN | 97.0 | 0.206 | 3.2 | 0.094 | 0.099 | 5.4 | 0.555 | |
BI | 100.0 | 0.202 | 0.9 | 0.048 | 0.070 | 46.2 | 0.906 | |
200 | PI | 98.2 | 0.218 | 8.8 | 0.104 | 0.089 | -14.0 | 0.735 |
LMS | 100.0 | 0.202 | 0.9 | 0.063 | 0.063 | -0.7 | 0.878 | |
BN | 100.0 | 0.214 | 7.1 | 0.063 | 0.063 | -0.9 | 0.922 | |
BI | 100.0 | 0.212 | 5.8 | 0.045 | 0.052 | 15.8 | 0.992 | |
500 | PI | 100.0 | 0.206 | 3.0 | 0.058 | 0.054 | -5.7 | 0.982 |
LMS | 100.0 | 0.201 | 0.6 | 0.039 | 0.039 | -0.1 | 0.998 | |
BN | 100.0 | 0.203 | 1.4 | 0.040 | 0.038 | -5.7 | 1.000 | |
BI | 100.0 | 0.202 | 0.8 | 0.034 | 0.035 | 3.0 | 1.000 |
Table 3 Results of the standardized estimation of latent interaction effects under the normal distribution (γ3 = 0.2)
N | Method | Proper solution% | M | M Bias% | SD | SE | SE Bias% | Statistical power |
---|---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (0.001, -0.004), ξ2 (-0.008, -0.007), ξ1ξ2 (-0.024, 6.163) | ||||||||
100 | PI | 73.8 | 0.217 | 8.3 | 0.216 | 0.183 | -15.6 | 0.236 |
LMS | 100.0 | 0.189 | -5.7 | 0.148 | 0.144 | -2.6 | 0.300 | |
BN | 100.0 | 0.183 | -8.3 | 0.146 | 0.145 | -0.2 | 0.268 | |
BI | 100.0 | 0.195 | -2.6 | 0.051 | 0.084 | 65.0 | 0.766 | |
200 | PI | 95.2 | 0.213 | 6.7 | 0.141 | 0.129 | -8.8 | 0.416 |
LMS | 100.0 | 0.199 | -0.5 | 0.104 | 0.098 | -6.3 | 0.566 | |
BN | 100.0 | 0.215 | 7.3 | 0.106 | 0.095 | -10.4 | 0.638 | |
BI | 100.0 | 0.208 | 4.1 | 0.054 | 0.067 | 24.1 | 0.924 | |
500 | PI | 100.0 | 0.204 | 2.1 | 0.081 | 0.079 | -2.4 | 0.774 |
LMS | 100.0 | 0.201 | 0.3 | 0.061 | 0.061 | 0.0 | 0.878 | |
BN | 100.0 | 0.202 | 1.2 | 0.062 | 0.061 | -1.7 | 0.888 | |
BI | 100.0 | 0.201 | 0.7 | 0.045 | 0.051 | 13.2 | 0.986 | |
ϕ12 = 0.3, ξ1 (-0.001, 0.000), ξ2 (-0.001, 0.001), ξ1ξ2 (1.619, 7.628) | ||||||||
100 | PI | 81.2 | 0.230 | 15.2 | 0.210 | 0.176 | -15.9 | 0.273 |
LMS | 100.0 | 0.198 | -1.1 | 0.133 | 0.124 | -7.0 | 0.420 | |
BN | 100.0 | 0.200 | -0.2 | 0.130 | 0.131 | 1.1 | 0.374 | |
BI | 100.0 | 0.200 | -0.2 | 0.051 | 0.081 | 58.5 | 0.778 | |
200 | PI | 95.8 | 0.226 | 12.9 | 0.142 | 0.120 | -15.3 | 0.476 |
LMS | 100.0 | 0.201 | 0.7 | 0.089 | 0.086 | -3.4 | 0.626 | |
BN | 100.0 | 0.215 | 7.6 | 0.089 | 0.085 | -4.7 | 0.674 | |
BI | 100.0 | 0.209 | 4.6 | 0.051 | 0.063 | 21.9 | 0.962 | |
500 | PI | 99.6 | 0.207 | 3.7 | 0.072 | 0.071 | -1.4 | 0.871 |
LMS | 100.0 | 0.201 | 0.7 | 0.054 | 0.054 | 0.1 | 0.954 | |
BN | 100.0 | 0.204 | 2.1 | 0.055 | 0.053 | -3.5 | 0.964 | |
BI | 100.0 | 0.202 | 1.0 | 0.042 | 0.046 | 9.3 | 0.998 | |
ϕ12 = 0.7, ξ1 (-0.005, 0.002), ξ2 (-0.005, -0.002), ξ1ξ2 (2.673, 11.073) | ||||||||
100 | PI | 89.6 | 0.232 | 15.9 | 0.165 | 0.134 | -18.7 | 0.446 |
LMS | 99.8 | 0.203 | 1.4 | 0.095 | 0.090 | -5.4 | 0.623 | |
BN | 97.0 | 0.206 | 3.2 | 0.094 | 0.099 | 5.4 | 0.555 | |
BI | 100.0 | 0.202 | 0.9 | 0.048 | 0.070 | 46.2 | 0.906 | |
200 | PI | 98.2 | 0.218 | 8.8 | 0.104 | 0.089 | -14.0 | 0.735 |
LMS | 100.0 | 0.202 | 0.9 | 0.063 | 0.063 | -0.7 | 0.878 | |
BN | 100.0 | 0.214 | 7.1 | 0.063 | 0.063 | -0.9 | 0.922 | |
BI | 100.0 | 0.212 | 5.8 | 0.045 | 0.052 | 15.8 | 0.992 | |
500 | PI | 100.0 | 0.206 | 3.0 | 0.058 | 0.054 | -5.7 | 0.982 |
LMS | 100.0 | 0.201 | 0.6 | 0.039 | 0.039 | -0.1 | 0.998 | |
BN | 100.0 | 0.203 | 1.4 | 0.040 | 0.038 | -5.7 | 1.000 | |
BI | 100.0 | 0.202 | 0.8 | 0.034 | 0.035 | 3.0 | 1.000 |
N | Method | Proper solution% | M | M Bias% | SD | SE | SE Bias% | Statistical power |
---|---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (1.141, 1.962), ξ2 (1.152, 2.002), ξ1ξ2 (1.278, 20.126) | ||||||||
100 | PI | 67.0 | 0.232 | 15.8 | 0.223 | 0.202 | -9.7 | 0.194 |
LMS | 99.6 | 0.197 | -1.4 | 0.152 | 0.153 | 0.3 | 0.329 | |
BN | 100.0 | 0.201 | 0.7 | 0.151 | 0.148 | -2.2 | 0.314 | |
BI | 100.0 | 0.200 | 0.2 | 0.050 | 0.084 | 69.9 | 0.772 | |
200 | PI | 88.6 | 0.223 | 11.4 | 0.177 | 0.149 | -15.8 | 0.348 |
LMS | 100.0 | 0.206 | 2.9 | 0.106 | 0.102 | -4.4 | 0.556 | |
BN | 100.0 | 0.223 | 11.7 | 0.107 | 0.098 | -8.5 | 0.620 | |
BI | 100.0 | 0.214 | 6.9 | 0.055 | 0.067 | 23.1 | 0.920 | |
500 | PI | 99.0 | 0.212 | 6.0 | 0.101 | 0.091 | -10.3 | 0.725 |
LMS | 100.0 | 0.214 | 6.8 | 0.065 | 0.063 | -2.5 | 0.890 | |
BN | 100.0 | 0.217 | 8.7 | 0.066 | 0.061 | -6.9 | 0.904 | |
BI | 100.0 | 0.212 | 6.1 | 0.047 | 0.052 | 11.0 | 0.988 | |
ϕ12 = 0.3, ξ1 (0.855, 1.121), ξ2 (0.858, 1.161), ξ1ξ2 (3.200, 32.430) | ||||||||
100 | PI | 81.8 | 0.239 | 19.7 | 0.207 | 0.173 | -16.5 | 0.330 |
LMS | 99.8 | 0.252 | 25.8 | 0.131 | 0.129 | -2.0 | 0.533 | |
BN | 100.0 | 0.260 | 30.0 | 0.129 | 0.131 | 1.4 | 0.528 | |
BI | 100.0 | 0.227 | 13.4 | 0.053 | 0.082 | 54.8 | 0.878 | |
200 | PI | 95.2 | 0.223 | 11.5 | 0.132 | 0.117 | -11.2 | 0.527 |
LMS | 100.0 | 0.251 | 25.4 | 0.089 | 0.088 | -0.5 | 0.804 | |
BN | 100.0 | 0.270 | 34.9 | 0.089 | 0.085 | -5.1 | 0.862 | |
BI | 100.0 | 0.244 | 22.1 | 0.054 | 0.063 | 17.3 | 0.986 | |
500 | PI | 100.0 | 0.207 | 3.4 | 0.075 | 0.071 | -6.1 | 0.868 |
LMS | 100.0 | 0.253 | 26.7 | 0.058 | 0.055 | -5.4 | 0.990 | |
BN | 100.0 | 0.258 | 28.9 | 0.059 | 0.053 | -10.1 | 0.994 | |
BI | 100.0 | 0.245 | 22.7 | 0.046 | 0.046 | 0.6 | 1.000 | |
ϕ12 = 0.7, ξ1 (0.850, 1.075), ξ2 (0.856, 1.110), ξ1ξ2 (6.275, 86.323) | ||||||||
100 | PI | 85.0 | 0.221 | 10.3 | 0.133 | 0.114 | -13.8 | 0.576 |
LMS | 99.8 | 0.299 | 49.5 | 0.098 | 0.094 | -4.6 | 0.872 | |
BN | 98.2 | 0.302 | 51.2 | 0.094 | 0.101 | 7.9 | 0.851 | |
BI | 100.0 | 0.267 | 33.4 | 0.052 | 0.073 | 40.2 | 0.986 | |
200 | PI | 96.0 | 0.210 | 4.9 | 0.078 | 0.073 | -6.1 | 0.831 |
LMS | 100.0 | 0.297 | 48.7 | 0.065 | 0.065 | -0.2 | 0.992 | |
BN | 99.4 | 0.303 | 51.4 | 0.064 | 0.063 | -2.6 | 0.994 | |
BI | 100.0 | 0.291 | 45.7 | 0.047 | 0.051 | 8.3 | 0.998 | |
500 | PI | 100.0 | 0.204 | 1.8 | 0.047 | 0.044 | -6.1 | 0.992 |
LMS | 100.0 | 0.297 | 48.6 | 0.041 | 0.040 | -2.7 | 1.000 | |
BN | 100.0 | 0.298 | 49.2 | 0.041 | 0.039 | -5.2 | 1.000 | |
BI | 100.0 | 0.290 | 45.1 | 0.037 | 0.035 | -5.5 | 1.000 |
Table 4 Results of the standardized estimation of latent interaction effects under the non-normal distribution (γ3 = 0.2)
N | Method | Proper solution% | M | M Bias% | SD | SE | SE Bias% | Statistical power |
---|---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (1.141, 1.962), ξ2 (1.152, 2.002), ξ1ξ2 (1.278, 20.126) | ||||||||
100 | PI | 67.0 | 0.232 | 15.8 | 0.223 | 0.202 | -9.7 | 0.194 |
LMS | 99.6 | 0.197 | -1.4 | 0.152 | 0.153 | 0.3 | 0.329 | |
BN | 100.0 | 0.201 | 0.7 | 0.151 | 0.148 | -2.2 | 0.314 | |
BI | 100.0 | 0.200 | 0.2 | 0.050 | 0.084 | 69.9 | 0.772 | |
200 | PI | 88.6 | 0.223 | 11.4 | 0.177 | 0.149 | -15.8 | 0.348 |
LMS | 100.0 | 0.206 | 2.9 | 0.106 | 0.102 | -4.4 | 0.556 | |
BN | 100.0 | 0.223 | 11.7 | 0.107 | 0.098 | -8.5 | 0.620 | |
BI | 100.0 | 0.214 | 6.9 | 0.055 | 0.067 | 23.1 | 0.920 | |
500 | PI | 99.0 | 0.212 | 6.0 | 0.101 | 0.091 | -10.3 | 0.725 |
LMS | 100.0 | 0.214 | 6.8 | 0.065 | 0.063 | -2.5 | 0.890 | |
BN | 100.0 | 0.217 | 8.7 | 0.066 | 0.061 | -6.9 | 0.904 | |
BI | 100.0 | 0.212 | 6.1 | 0.047 | 0.052 | 11.0 | 0.988 | |
ϕ12 = 0.3, ξ1 (0.855, 1.121), ξ2 (0.858, 1.161), ξ1ξ2 (3.200, 32.430) | ||||||||
100 | PI | 81.8 | 0.239 | 19.7 | 0.207 | 0.173 | -16.5 | 0.330 |
LMS | 99.8 | 0.252 | 25.8 | 0.131 | 0.129 | -2.0 | 0.533 | |
BN | 100.0 | 0.260 | 30.0 | 0.129 | 0.131 | 1.4 | 0.528 | |
BI | 100.0 | 0.227 | 13.4 | 0.053 | 0.082 | 54.8 | 0.878 | |
200 | PI | 95.2 | 0.223 | 11.5 | 0.132 | 0.117 | -11.2 | 0.527 |
LMS | 100.0 | 0.251 | 25.4 | 0.089 | 0.088 | -0.5 | 0.804 | |
BN | 100.0 | 0.270 | 34.9 | 0.089 | 0.085 | -5.1 | 0.862 | |
BI | 100.0 | 0.244 | 22.1 | 0.054 | 0.063 | 17.3 | 0.986 | |
500 | PI | 100.0 | 0.207 | 3.4 | 0.075 | 0.071 | -6.1 | 0.868 |
LMS | 100.0 | 0.253 | 26.7 | 0.058 | 0.055 | -5.4 | 0.990 | |
BN | 100.0 | 0.258 | 28.9 | 0.059 | 0.053 | -10.1 | 0.994 | |
BI | 100.0 | 0.245 | 22.7 | 0.046 | 0.046 | 0.6 | 1.000 | |
ϕ12 = 0.7, ξ1 (0.850, 1.075), ξ2 (0.856, 1.110), ξ1ξ2 (6.275, 86.323) | ||||||||
100 | PI | 85.0 | 0.221 | 10.3 | 0.133 | 0.114 | -13.8 | 0.576 |
LMS | 99.8 | 0.299 | 49.5 | 0.098 | 0.094 | -4.6 | 0.872 | |
BN | 98.2 | 0.302 | 51.2 | 0.094 | 0.101 | 7.9 | 0.851 | |
BI | 100.0 | 0.267 | 33.4 | 0.052 | 0.073 | 40.2 | 0.986 | |
200 | PI | 96.0 | 0.210 | 4.9 | 0.078 | 0.073 | -6.1 | 0.831 |
LMS | 100.0 | 0.297 | 48.7 | 0.065 | 0.065 | -0.2 | 0.992 | |
BN | 99.4 | 0.303 | 51.4 | 0.064 | 0.063 | -2.6 | 0.994 | |
BI | 100.0 | 0.291 | 45.7 | 0.047 | 0.051 | 8.3 | 0.998 | |
500 | PI | 100.0 | 0.204 | 1.8 | 0.047 | 0.044 | -6.1 | 0.992 |
LMS | 100.0 | 0.297 | 48.6 | 0.041 | 0.040 | -2.7 | 1.000 | |
BN | 100.0 | 0.298 | 49.2 | 0.041 | 0.039 | -5.2 | 1.000 | |
BI | 100.0 | 0.290 | 45.1 | 0.037 | 0.035 | -5.5 | 1.000 |
Features | Original estimation | Appropriate standardized estimation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Unconstrained Product indicator approach | LMS | Bayesian methods | Unconstrained Product Indicator approach | LMS | Bayesian method | |||||
Noninformative priors | Informative priors | Noninformative priors | Informative priors | |||||||
Interaction effect bias | Normal | Acceptable if N is large | Acceptable | - | Acceptable | Acceptable if N is large | Acceptable | Acceptable | Acceptable | |
Non-normal | Acceptable if N is large | Large bias | - | - | Acceptable if N is large | Acceptable if the correlation between exogenous latent variables is close to zero | ||||
Standard error bias | Normal | Acceptable if N is large | Acceptable | - | Acceptable | Acceptable if N is large | Acceptable | Acceptable | Overestimate | |
Non-normal | Acceptable if N is large | Bias may be large | - | - | Acceptable if N is large | Acceptable | Acceptable | Acceptable if N is large | ||
Type I error rate | Normal | Acceptable | Acceptable | - | - | Acceptable | Acceptable if N is large | Acceptable | Acceptable | |
Non-normal | Acceptable | High | - | - | Acceptable | High | Acceptable if the sample size is small or the correlation of exogenous latent variables is close to zero | |||
Statistical power | Normal/ non-normal | Acceptable if N is large | High | - | - | Acceptable if N is large | High | High | Highest | |
Standardized estimation acquisition method | Manual calculation using the original estimates and the usual standardized estimates, or using the Mplus syntax in the Appendix | Mplus programming, output standard solutions (Mplus 8.2 or later versions) |
Table 5 Comparison of original estimation and appropriate standardized estimation of the product indicator approach, LMS and Bayesian methods
Features | Original estimation | Appropriate standardized estimation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Unconstrained Product indicator approach | LMS | Bayesian methods | Unconstrained Product Indicator approach | LMS | Bayesian method | |||||
Noninformative priors | Informative priors | Noninformative priors | Informative priors | |||||||
Interaction effect bias | Normal | Acceptable if N is large | Acceptable | - | Acceptable | Acceptable if N is large | Acceptable | Acceptable | Acceptable | |
Non-normal | Acceptable if N is large | Large bias | - | - | Acceptable if N is large | Acceptable if the correlation between exogenous latent variables is close to zero | ||||
Standard error bias | Normal | Acceptable if N is large | Acceptable | - | Acceptable | Acceptable if N is large | Acceptable | Acceptable | Overestimate | |
Non-normal | Acceptable if N is large | Bias may be large | - | - | Acceptable if N is large | Acceptable | Acceptable | Acceptable if N is large | ||
Type I error rate | Normal | Acceptable | Acceptable | - | - | Acceptable | Acceptable if N is large | Acceptable | Acceptable | |
Non-normal | Acceptable | High | - | - | Acceptable | High | Acceptable if the sample size is small or the correlation of exogenous latent variables is close to zero | |||
Statistical power | Normal/ non-normal | Acceptable if N is large | High | - | - | Acceptable if N is large | High | High | Highest | |
Standardized estimation acquisition method | Manual calculation using the original estimates and the usual standardized estimates, or using the Mplus syntax in the Appendix | Mplus programming, output standard solutions (Mplus 8.2 or later versions) |
[1] |
Algina J., & Moulder B. C.(2001). A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3. Structural Equation Modeling: A Multidisciplinary Journal, 8(1), 40-52.
doi: 10.1207/S15328007SEM0801_3 URL |
[2] |
Arminger G., & Muthén B.(1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika, 63(3), 271-300.
doi: 10.1007/BF02294856 URL |
[3] | Asparouhov T., & Muthén B.(2010). Bayesian analysis of latent variable models using Mplus. Muthén & Muthén. |
[4] |
Asparouhov T., & Muthén B.(2021). Bayesian estimation of single and multilevel models with latent variable interactions. Structural Equation Modeling: A Multidisciplinary Journal, 28(2), 314-328.
doi: 10.1080/10705511.2020.1761808 URL |
[5] |
Aytürk E., Cham H., Jennings P. A., & Brown J. L.(2020). Exploring the performance of latent moderated structural equations approach for ordered-categorical items. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 410-422.
doi: 10.1080/10705511.2020.1810047 URL |
[6] |
Bandalos D. L.(2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 9(1), 78-102.
doi: 10.1207/S15328007SEM0901_5 URL |
[7] | Boomsma A.(1983). On the robustness of LISREL against small sample size and non-normality [Unpublished doctoral dissertation]. University of Groningen. |
[8] |
Bradley J. V.(1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31(2), 144-152.
doi: 10.1111/bmsp.1978.31.issue-2 URL |
[9] |
Brandt H., Cambria J., & Kelava A.(2018). An adaptive Bayesian lasso approach with spike-and-slab priors to identify multiple linear and nonlinear effects in structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(6), 946-960.
doi: 10.1080/10705511.2018.1474114 URL |
[10] | Brandt H., Umbach N., & Kelava A.(2015). The standardization of linear and nonlinear effects in direct and indirect applications of structural equation mixture models for normal and nonnormal data. Frontiers in Psychology, 6, 1813. |
[11] |
Büchner R. D., & Klein A. G.(2020). A Quasi-likelihood approach to assess model fit in quadratic and interaction SEM. Multivariate Behavioral Research, 55(6), 855-872.
doi: 10.1080/00273171.2019.1689349 URL |
[12] |
Cham H., West S. G., Ma Y., & Aiken L. S.(2012). Estimating latent variable interactions with nonnormal observed data: A comparison of four approaches. Multivariate Behavioral Research, 47(6), 840-876.
doi: 10.1080/00273171.2012.732901 URL |
[13] |
Champoux J. E., & Peters W. S.(1987). Form, effect size and power in moderated regression analysis. Journal of Occupational Psychology, 60(3), 243-255.
doi: 10.1111/joop.1987.60.issue-3 URL |
[14] |
Fang J., Wen Z., & Hau K. -T.(2019). Mediation effects in 2-1-1 multilevel model: Evaluation of alternative estimation methods. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 591-606.
doi: 10.1080/10705511.2018.1547967 URL |
[15] |
Foldnes N., & Hagtvet K. A.(2014). The choice of product indicators in latent variable interaction models: Post hoc analyses. Psychological Methods, 19(3), 444-457.
doi: 10.1037/a0035728 pmid: 24773360 |
[16] | Gelman A., Carlin J. B., Stern H. S., Dunson D. B., Vehtari A., & Rubin D. B.(2014). Bayesian data analysis (3rd ed.). Boca Raton, FL: CRC press. |
[17] |
Geman S., & Geman D.(1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721-741.
pmid: 22499653 |
[18] |
Hastings W. K.(1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.
doi: 10.1093/biomet/57.1.97 URL |
[19] |
Hau K. -T., & Marsh H. W.(2004). The use of item parcels in structural equation modelling: Non-normal data and small sample sizes. British Journal of Mathematical and Statistical Psychology, 57(2), 327-351.
doi: 10.1111/bmsp.2004.57.issue-2 URL |
[20] |
Holtmann J., Koch T., Lochner K., & Eid M.(2016). A comparison of ML, WLSMV, and Bayesian methods for multilevel structural equation models in small samples: A simulation study. Multivariate Behavioral Research, 51(5), 661-680.
pmid: 27594086 |
[21] | Hoogland J. J., & Boomsma A.(1998). Robustness studies in covariance structure modeling: An overview and a meta-analysis. Sociological Methods & Research, 26(3), 329-367. |
[22] |
Ito T. A., Friedman N. P., Bartholow B. D., Correll J., Loersch C., Altamirano L. J., & Miyake A.(2015). Toward a comprehensive understanding of executive cognitive function in implicit racial bias. Journal of Personality and Social Psychology, 108(2), 187-217.
doi: 10.1037/a0038557 URL |
[23] |
Jaccard J., & Wan C. K.(1995). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117(2), 348-357.
doi: 10.1037/0033-2909.117.2.348 URL |
[24] |
Jackman M. G. A., Leite W. L., & Cochrane D. J.(2011). Estimating latent variable interactions with the unconstrained approach: A comparison of methods to form product indicators for large, unequal numbers of items. Structural Equation Modeling: A Multidisciplinary Journal, 18(2), 274-288.
doi: 10.1080/10705511.2011.557342 URL |
[25] | Jia F.(2016). Methods for handling missing non-normal data in structural equation modeling [Unpublished doctoral dissertation]. University of Kansas. |
[26] | Jöreskog K. G., & Sörbom D.(1996). LISREL 8: User's reference guide. Chicago, IL: Scientific Software International, Inc. |
[27] |
Kelava A., Moosbrugger H., Dimitruk P., & Schermelleh-Engel K.(2008). Multicollinearity and missing constraints: A comparison of three approaches for the analysis of latent nonlinear effects. Methodology, 4(2), 51-66.
doi: 10.1027/1614-2241.4.2.51 URL |
[28] |
Kelava A., & Nagengast B.(2012). A Bayesian model for the estimation of latent interaction and quadratic effects when latent variables are non-normally distributed. Multivariate Behavioral Research, 47(5), 717-742.
doi: 10.1080/00273171.2012.715560 URL |
[29] |
Kelava A., Nagengast B., & Brandt H.(2014). A nonlinear structural equation mixture modeling approach for nonnormally distributed latent predictor variables. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 468-481.
doi: 10.1080/10705511.2014.915379 URL |
[30] |
Kelava A., Werner C. S., Schermelleh-Engel K., Moosbrugger H., Zapf D., Ma Y., … West S. G.(2011). Advanced nonlinear latent variable modeling: Distribution analytic LMS and QML estimators of interaction and quadratic effects. Structural Equation Modeling: A Multidisciplinary Journal, 18(3), 465-491.
doi: 10.1080/10705511.2011.582408 URL |
[31] |
Kenny D. A., & Judd C. M.(1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96(1), 201-210.
doi: 10.1037/0033-2909.96.1.201 URL |
[32] |
Klein A. G., & Moosbrugger H.(2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(4), 457-474.
doi: 10.1007/BF02296338 URL |
[33] |
Klein A. G., & Muthén B. O.(2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42(4), 647-673.
doi: 10.1080/00273170701710205 URL |
[34] | Laczniak R. N., Carlson L., Walker D., & Brocato E. D.(2017). Parental restrictive mediation and children's violent video game play: The effectiveness of the Entertainment Software Rating Board (ESRB) rating system. Journal of Public Policy & Marketing, 36(1), 70-78. |
[35] |
Lee S. Y., & Song X. Y.(2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39(4), 653-686.
doi: 10.1207/s15327906mbr3904_4 URL |
[36] |
Lee S. Y., Song X. Y., & Poon W. Y.(2004). Comparison of approaches in estimating interaction and quadratic effects of latent variables. Multivariate Behavioral Research, 39(1), 37-67.
doi: 10.1207/s15327906mbr3901_2 URL |
[37] |
Lee S. Y., Song X. Y., & Tang N. S.(2007). Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 404-434.
doi: 10.1080/10705510701301511 URL |
[38] |
Lin G. C., Wen Z., Marsh H. W., & Lin H. S.(2010). Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies. Structural Equation Modeling: A Multidisciplinary Journal, 17(3), 374-391.
doi: 10.1080/10705511.2010.488999 URL |
[39] |
MacCallum R. C., & Austin J. T.(2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51(1), 201-226.
doi: 10.1146/psych.2000.51.issue-1 URL |
[40] |
Marsh H. W., Wen Z., & Hau K. -T.(2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9(3), 275-300.
doi: 10.1037/1082-989X.9.3.275 URL |
[41] | Marsh H. W., Wen Z., Nagengast B., & Hau K. -T.(2012). Structural equation models of latent interaction. In R. H. Hoyle(Ed.), Handbook of structural equation modeling (pp.436-458). New York: Guilford Press. |
[42] |
Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., & Teller E.(1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092.
doi: 10.1063/1.1699114 URL |
[43] |
Miočević M., MacKinnon D. P., & Levy R.(2017). Power in Bayesian mediation analysis for small sample research. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 666-683.
doi: 10.1080/10705511.2017.1312407 URL |
[44] |
Moulder B. C., & Algina J.(2002). Comparison of methods for estimating and testing latent variable interactions. Structural Equation Modeling: A Multidisciplinary Journal, 9(1), 1-19.
doi: 10.1207/S15328007SEM0901_1 URL |
[45] |
Muthén B., & Asparouhov T.(2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335.
doi: 10.1037/a0026802 pmid: 22962886 |
[46] |
Muthén B., Kaplan D., & Hollis M.(1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 52(3), 431-462.
doi: 10.1007/BF02294365 URL |
[47] | Muthén L. K., & Muthén B. O.(2019). Mplus user’s guide (8th ed.). Los Angeles, CA: Muthén & Muthén. |
[48] |
Nagengast B., Marsh H. W., Scalas L. F., Xu M. K., Hau K. -T., & Trautwein U.(2011). Who took the “×” out of expectancy-value theory? A psychological mystery, a substantive-methodological synergy, and a cross-national generalization. Psychological Science, 22(8), 1058-1066.
doi: 10.1177/0956797611415540 pmid: 21750248 |
[49] | Satorra A., & Bentler P. M.(1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp.399-419). Thousand Oaks, CA: Sage. |
[50] | Schermelleh-Engel K., Klein A., & Moosbrugger H.(1998). Estimating nonlinear effects using a latent moderated structural equations approach. In R. E. Schumacker & G. A. Marcoulides(Eds.), Interaction and nonlinear effects in structural equation modeling (pp. 203-238). Mahwah, NJ: Erlbaum. |
[51] |
Smid S. C., McNeish D., Miočević M., & van de Schoot R.(2020). Bayesian versus frequentist estimation for structural equation models in small sample contexts: A systematic review. Structural Equation Modeling: A Multidisciplinary Journal, 27(1), 131-161.
doi: 10.1080/10705511.2019.1577140 URL |
[52] |
van Erp S., Mulder J., & Oberski D. L.(2018). Prior sensitivity analysis in default Bayesian structural equation modeling. Psychological Methods, 23(2), 363-388.
doi: 10.1037/met0000162 URL |
[53] |
Wen Z., Hau K. -T., & Marsh H. W.(2008). Appropriate standardized estimates for moderating effects in structural equation models. Acta Psychologica Sinica, 40(6), 729-736.
doi: 10.3724/SP.J.1041.2008.00729 URL |
[54] | Wen Z., & Liu H.(2020). Analyses of mediating and moderating effects: Methods and applications. Beijing: Educational Science Publishing House. |
[55] |
Wen Z., Marsh H. W., & Hau K. -T.(2010). Structural equation models of latent interactions: An appropriate standardized solution and its scale-free properties. Structural Equation Modeling: A Multidisciplinary Journal, 17(1), 1-22.
doi: 10.1080/10705510903438872 URL |
[56] | Wen Z., & Wu Y.(2010). Evolution and simplification of the approaches to estimating structural equation models with latent interaction. Advance in Psychological Science, 18(8), 1306-1313. |
[57] | Wen Z., Wu Y., & Hau K. -T.(2013). Latent interaction in structural equation modeling: Distribution-analytic approaches. Psychological Exploration, 33(5), 409-414. |
[58] | Wu Y., Wen Z., Hau K. -T., & Marsh H. W.(2011). Appropriate standardized estimates of latent interaction models without the mean structure. Acta Psychologica Sinica, 43(10), 1219-1228. |
[59] | Wu Y., Wen Z., & Li B.(2014). Testing the standardized solutions in structural equation models with interaction effects. Psychological Exploration, 34(3), 260-264. |
[60] | Wu Y., Wen Z., & Lin G. C.(2009). Structural equation modeling of latent interactions without using the mean structure. Acta Psychologica Sinica, 41(12), 1252-1259. |
[61] |
Wu Y., Wen Z., Marsh H. W., & Hau K. -T.(2013). A comparison of strategies for forming product indicators for unequal numbers of items in structural equation models of latent interactions. Structural Equation Modeling: A Multidisciplinary Journal, 20(4), 551-567.
doi: 10.1080/10705511.2013.824772 URL |
[62] |
You J., Deng B., Lin M. P., & Leung F.(2016). The interactive effects of impulsivity and negative emotions on adolescent nonsuicidal self-injury: A latent growth curve analysis. Suicide and Life‐Threatening Behavior, 46(3), 266-283.
doi: 10.1111/sltb.2016.46.issue-3 URL |
[63] |
Yuan Y., & MacKinnon D. P.(2009). Bayesian mediation analysis. Psychological Methods, 14(4), 301-322.
doi: 10.1037/a0016972 URL |
[64] | Zhang L. J., Lu J., Wei X. Y., & Pan J. H.(2019). Bayesian structural equation modeling and its current researches. Advance in Psychological Science, 27(11), 1812-1825. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||